Logjika Matematikore
Deqani-ks :: Shkenca :: Matematika :: Degët e matematikës
Faqja 1 e 1
Logjika Matematikore
Logjika Matematikore
Themelues i Logjikës matematikore konsiderohet matematikani anglez George Boole kuptimet e para të logjikës formale i kanë dhënë grekët e vjetër me përfaqësuesin kryesor të saj Aristotelin. Logjika matematikore lindi nga nevoja e eliminimit të kundërthënieve dhe paradokseve që u paraqitën në teorinë e bashkësive poashtu ajo ka luajtur një rol të veçantë në lindjen e disa lëmive të reja të matematikës bashkohore. Kjo degë përsosi simbolet e deriatëhershme dhe e plotësoi me simbole të reja gjuhën simbolike.
Themelues i Logjikës matematikore konsiderohet matematikani anglez George Boole kuptimet e para të logjikës formale i kanë dhënë grekët e vjetër me përfaqësuesin kryesor të saj Aristotelin. Logjika matematikore lindi nga nevoja e eliminimit të kundërthënieve dhe paradokseve që u paraqitën në teorinë e bashkësive poashtu ajo ka luajtur një rol të veçantë në lindjen e disa lëmive të reja të matematikës bashkohore. Kjo degë përsosi simbolet e deriatëhershme dhe e plotësoi me simbole të reja gjuhën simbolike.
Re: Logjika Matematikore
Gjykimet
Gjykimi ( pohimi ), është koncept themelor në Logjikën matematikore. Në aspektin e saktësisë gjykimi i nënshtrohet ligjit të përjashtimit të së tretës dhe merr vetëm njërën nga vlerat i saktë ose jo i saktë (true ose false). p.sh. gjykime janë fjalitë: " Wikipedia nuk është e shkruar në gjuhen shqipe ", " 1+1=1 " ( këto pohime në logjikën matematikore mirren si gjykime ) jo të sakta, sepse " Tani unë po e lexojë këtë artikull të shkruar në gjuhen shqipe " dhe " 1+1=2 " janë gjykime të sakta. Vetitë i saktë dhe jo i saktë quhen vlera të saktësisë së gjykimit dhe shënohen me simbolet T (lexo: te) dhe \perp (lexo: jo te). Simboli " T " është i ngjashëm me germën e parë të fjalës angleze True=i (e) saktë. Emërtimi i gjykimeve zakonisht bëhet me germat e vogla të alfabetit, si p, q, r, ... dhe trajtohen si variabla gjykimesh, ndërsa vlerat e tyre shënohen me : v(p), v(q), v(r), ... dhe janë konstante. Mirëpo për thjeshtësi vlerat e gjykimeve shkruhen vetëm me emërtimin e gjykimit.
Gjykimi ( pohimi ), është koncept themelor në Logjikën matematikore. Në aspektin e saktësisë gjykimi i nënshtrohet ligjit të përjashtimit të së tretës dhe merr vetëm njërën nga vlerat i saktë ose jo i saktë (true ose false). p.sh. gjykime janë fjalitë: " Wikipedia nuk është e shkruar në gjuhen shqipe ", " 1+1=1 " ( këto pohime në logjikën matematikore mirren si gjykime ) jo të sakta, sepse " Tani unë po e lexojë këtë artikull të shkruar në gjuhen shqipe " dhe " 1+1=2 " janë gjykime të sakta. Vetitë i saktë dhe jo i saktë quhen vlera të saktësisë së gjykimit dhe shënohen me simbolet T (lexo: te) dhe \perp (lexo: jo te). Simboli " T " është i ngjashëm me germën e parë të fjalës angleze True=i (e) saktë. Emërtimi i gjykimeve zakonisht bëhet me germat e vogla të alfabetit, si p, q, r, ... dhe trajtohen si variabla gjykimesh, ndërsa vlerat e tyre shënohen me : v(p), v(q), v(r), ... dhe janë konstante. Mirëpo për thjeshtësi vlerat e gjykimeve shkruhen vetëm me emërtimin e gjykimit.
Re: Logjika Matematikore
Fjalia e cila ka njërën nga e vlerat saktësisë- e saktë ose jo e saktë- quhet gjykim
Pohimit " Wikipedia nuk është e shkruar në gjuhen shqipe " kur të i japim njërën nga vlerat e saktësisë- e saktë ose jo e saktë- quhet gjykim. Mirëpo në matematikë përpos këtyre gjykimeve kemi edhe gjykime të hapura si p.sh Wikipedia do të ketë 1000 artikuj në vitin 2000+x " ose " 10+x=200 ", etj. . Varrësisht prej vlerës së variabilës x të cilës i japim (nëse shkruajmë më shumë artikuj viti 2005, x=5) vlera konkrete, gjykimet do jenë të sakta ose jo të sakta. Metoda e shëndrrimit të një pohimi të tillë në gjykim quhet metoda e zëvendësimit (metoda e substitucionit).
gjykim i përbërë quhet gjykimi i cili fitohet kur dy gjykime të thjeshta i lidhim me lidhëzat ,, dhe,, ose,, etj.
Operacione themelore logjike == == tabelat e saktësisë vogla> P Nëse një gjykimi të caktuarpshtojmë parashtesën ia,, jo, atëherë gjykimi,, jo,, ose,, nuk është e vërtetë se p,, quhet negacionin i gjykimit p'. Nëse janë dhënë dy gjykimep, qatëherë nga ato me përdorimin e lidhëzave, "dhe", "ose", "," atëherë ...", "atëherë dhe vetëm atëherë", fitohen gjykime të përbëra. Në bazë të lidhëzave dallojmë këto operacione ose gjykime të përbëra: * ( pdhe'q i>) * ( pose'q i>) * ( atëherëp'q nëse i>) * ( atëherë nėsepVetëm atëherë'q dhe i>)
Pohimit " Wikipedia nuk është e shkruar në gjuhen shqipe " kur të i japim njërën nga vlerat e saktësisë- e saktë ose jo e saktë- quhet gjykim. Mirëpo në matematikë përpos këtyre gjykimeve kemi edhe gjykime të hapura si p.sh Wikipedia do të ketë 1000 artikuj në vitin 2000+x " ose " 10+x=200 ", etj. . Varrësisht prej vlerës së variabilës x të cilës i japim (nëse shkruajmë më shumë artikuj viti 2005, x=5) vlera konkrete, gjykimet do jenë të sakta ose jo të sakta. Metoda e shëndrrimit të një pohimi të tillë në gjykim quhet metoda e zëvendësimit (metoda e substitucionit).
gjykim i përbërë quhet gjykimi i cili fitohet kur dy gjykime të thjeshta i lidhim me lidhëzat ,, dhe,, ose,, etj.
Operacione themelore logjike == == tabelat e saktësisë vogla> P Nëse një gjykimi të caktuarpshtojmë parashtesën ia,, jo, atëherë gjykimi,, jo,, ose,, nuk është e vërtetë se p,, quhet negacionin i gjykimit p'. Nëse janë dhënë dy gjykimep, qatëherë nga ato me përdorimin e lidhëzave, "dhe", "ose", "," atëherë ...", "atëherë dhe vetëm atëherë", fitohen gjykime të përbëra. Në bazë të lidhëzave dallojmë këto operacione ose gjykime të përbëra: *
Re: Logjika Matematikore
Ligjet e logjikes matematikore (tautologjitë)
p.sh:
* ligji i kontrapozicionit
* ligji i përjashtimit të së tretës
* silogjizmi hipotetik
* ligjet e De Morganit
p.sh:
* ligji i kontrapozicionit
* ligji i përjashtimit të së tretës
* silogjizmi hipotetik
* ligjet e De Morganit
Deqani-ks :: Shkenca :: Matematika :: Degët e matematikës
Faqja 1 e 1
Drejtat e ktij Forumit:
Ju nuk mund ti përgjigjeni temave të këtij forumi